CMI Digital Signal Processor

Note: this document describes the technical details of the CMI DSP and its internal API. For

description of the client-server connection to it see the document “CMI SPM controller

interface”.

Overview

The electronics consists internally of two independent parts: a feedback loop module that
is implemented in the Red Pitaya (RP) and primarily run on the FPGA (and can run even on
a standalone RP, without the rest of electronics) and a data acquisition and generation
framework that is formed by two electronics boards connected to it via SPI interface and
includes 3x 20-bit DAC, 2x 18-bit 8-channel ADC, 1x 16-bit 16-channel DAC and RS232
interface. Block scheme is provided in Fig. 1. All the functionality is controlled by a single C
API, that can be located in the gwyhwserver_gwyscope folder in the root directory. For
running a Scanning Probe Microscope, also a server is provided, called gwyhwserver, that is
supposed to be controlled from some client outside of the RP, connected to it via Ethernet.

SPI | FPGA

ADAA4001-2 gain 10x 1 MHz |—| DAC1401D125 DAC A |

Analog outputs

| ADAZ001-2 gain 10x 1 MHz |—| DAC1401D125 DAC B |-r

FB loop I o

Analog inputs

|' | ADA4001-2 output buffer |
Analog inputs

/,..1 MUX36515 multiplexer A |—| ADA4001-2 input buffer |—{ LTC2145-14 ADC A } \

“— lock-in/PLL |

\ [MUx36516 multiplexer B |—{ ADA4001-2 input buffer |—| LTC2145-14 ADC B |

\ |

AN A R
\'“*-H_ \ i ADAA001-2 output buffer | Zynq
MAXT7301 io expander I | TAHC4515 cs decoder I — hwserver
N~ /. — ~—=—1GPIO
| \.__';‘-_—-,._____ ~)
[— = SPI l2C |
| | | |
—{ 3xDACL1001 xyz scan 2081t | [2xaDsss08 aDC 1881t | ['DAca1416 DAC 1681 | | SLOW DAC | | UART
Analog outputs Analog inputs Analog outputs

Fig. 1: Block scheme of the DSP

| ADA461E;—;1-buﬁer | | MAX32C’£ rs232 | |

| PCAQ306 level shiftar |

Feedback loop module

The feedback loop module consists of two independent lock-in amplifiers and different digital
feedback loops implemented on Red Pitaya’s FPGA. Its main purpose is to serve as a
source of z feedback for SPM measurements (main feedback loop) and eventually provide
PLL feedback for frequency modulated SPM (PLL feedback loop). Some other feedback
loops (amplitude, KPFM, DART) are available as well. Schematics of the internal
organisation on FPGA is shown in Fig. 2:

Red pitaya CPU interface digital outputs

L)_ p— - A

filter 1 - . A

RTL £ U= :RTL:

-~ F — & £

] et
ADC input ——-w:—:. . . R o
——|F = @

gR'TL; ‘ T%I | = éF_‘

fiter 2 iRTL: th ih
lock-in 1 / DAC output

lock-in 2 feedback loop

Fig. 2: internal organisation of the feedback loop module implemented on FPGA
The feedback loop module consists of the following components:

Data acquisition block: it samples the two high speed inputs at 125 MHz frequency and
passes the data to the filter.

Filter: a simple IIR filter can be used to pretreat the values coming from ADC (each channel
separately). It is based on calculating an average value that is then subtracted if passed to
the lock-in or used if passed to the feedback loop directly. Use of the filter in lock-in
operation is important for removing the DC offset, for this the decimation factor 12 (lowest
cutoff frequency) should be used to prevent unwanted reduction of the detected amplitude.
In the direct feedback loop it can be used to remove high frequency noise. The only control
parameter, decimation factor, controls the average value calculation, except the value 0 that
switches the filter off (signal is bypassed to the output). Other values are used to control the
averaging time in an exponential way. The effect of the filter in the lock-in mode is shown in
Fig. 3, displaying the detected decay of amplitude of generated and detected signal in a wide
frequency range.

4500

4000

3500

3000

P
@
2
2

M
=}
51
5}

amplitude [ADC units]

1500

1000

500 |-

N

decimation 5
decimation 6
decimation 7
decimation 8
decimation 9

decimation 10

decimation 11

decimation 12 ——
. filter off

1 1 1
0 200 400 600

frequency [kHz]

800

1000

cut-off frequency [kHz]

350 1
300 |- \
250 |-
200 |-
150
100

50 |

0

—

5

6

decimation parameter

" 12

Fig 3: filter applied during lock-in measurement of the reference signal amplitude: frequency
response and cutoff frequency dependence on the decimation factor.

Lock-in:

The feedback loop module contains two independent lock-ins, both capable of creating a
signal in the range of 500 Hz - 1.995 MHz with amplitude of 0-1 V. Driving signal (output)
goes to the feedback loop function and is passed to some of the DAC outputs, depending on
the regime. As an input, the signal coming from the filter is used and the filter should be on,
removing the DC component (unless the DC component is known to be negligible). Lock-in 1
works with ADC and filter 1, runs DAC1 and provides amplitude 1 and phase 1, operation of
lock-in 2 is analogous. The settable frequency resolution is 30 Hz, the settable amplitude
resolution is 0.0159301587 V. In the default regime the lock-in is designed to work with
already amplified signals (amplitudes in hundreds of mV), so the amplitude resolution is not
good to catch signals with small amplitudes (e.g. below 10 mV). In the high resolution regime
the lock-in can work with smaller signals (providing 64 times higher sensitivity), however it
should not be used with low frequency signals combined with large amplitude (e.g.
frequency of 500 Hz combined with >0.2 VV amplitude). The digital outputs are amplitude and
phase, to be used either within the feedback loop 1 or 2, or for the additional FM feedback
loop providing e.g. the phase locked loop.

Digital outputs:

Red Pitaya’s GPIO pins are used to control the external AD and DA converters, line decoder
and for fast SPI communication with the 20-bit DACs. Nevertheless, there are additional four
digital outputs denoted as RP1_SLOW_DAC]I1..4] in the schematics that are user settable.
Note that the logic level is 3.3 V.

Analog outputs:

The two high speed 14-bit analog outputs are controlled by the user or by the feedback loop,
depending on the feedback loop regime (see below). Their range is +-10 V (after
amplification). Moreover, the 20-bit high resolution DACs can be connected directly to the
FPGA to provide fast and high resolution data for the scanner.

Feedback loop:
The feedback loop operation is controlled by its regime, set in the hwserver.ini file. The
following sources of error signal can be fed into the main feedback loop:

RP Input1, RP Input2: feedback loop is based on an average signal coming from the filter
(use filter decimation 1 if you want to pass the raw data as an average).

Amplitude1, Amplitude2: feedback loop is based on the amplitude signal coming from one of
the lock-ins.

Phase1, Phase2: feedback loop is based on the phase signal coming from one of the
lock-ins.

Frequency: feedback loop is coming from the frequency of PLL that can be run on generator
1 and lock-in 1. The frequency shift needed to keep the phase constant is used as a source
of feedback loop. The phase that should be kept constant should be set before the FM part
of the feedback loop is started (setting fmsettings setpoint before fmsettings feedback is on).
This starts tracking the phase by altering generated frequency. Actual frequency shift is
provided as an error signal. After that feedback loop for z piezo can be started (setting
feedback 1 on, using desired frequency shift as value of setpoint1).

The direction of the error signal can be changed by the librp_SetState command (parameter
swap_in). The default settings are in hwserver.ini and should reflect the hardware (e.g. the
scanner orientation)

Data acquisition and generation framework

The data acquisition and generation framework consists of the following parts:
- 3x DAC11001A (3x single channel, 20-bit DAC, 1-LSB DNL (max), 4-LSB INL (max))
- 1x DAC81416 (1x 16-channel, 16-bit DAC)
- 2x ADS8598H (2x 8-channel, 18-bit ADC)
- RS232 interface
There is also an IO expander included, however this is used primarily for controlling the
converters in the present version.

Gwyhwserver

The server for controlling the SPM operation is called gwyhwserver and should be already
installed on the Red Pitaya, in the gwyhwserver_gwyscope folder, together with many
smaller test applications. To run the server, provide a port, e.g. calling it as ./hwserver 50100.
An ini file can be provided to set the hardware parameters that are system specific (e.g. scan
ranges), a default ini file is in the gwyhwserver directory.

The server should run always when the client (e.g. GwyScope) is supposed to do any SPM
control work. Only one client should be connected to the server and should be connected for
the entire SPM operation, otherwise the behaviour might be unpredictable. Gwyhwserver is
described in detail in a separate document.

Application Programming Interface

All the functionality of both the feedback loop module and data acquisition and generation
framework is controlled via APl implemented in C. All the functions are located in cmirp.h
and cmirp.c files. These functions are also used in all the test applications and in
gwyhwserver. Note that some of the function parameters should match the physical
hardware settings.

The following functions are available:

int librp_Init(librpSet *rpset, int hrdac_regime, int hrdac1_range, int hrdac2_range, int
hrdac3_range, int input_range1, int input_range2, int dds1_range, int dds2_range, int
oversampling, int rp1_input_hv, int rp2_input_hv, int rp_bare_output, int rp_bare_input);

This function initializes all the functions and connections, and sets all the default values.
Parameter hrdac_regime controls how the 20-bit DACs will be used (0: entirely from FPGA,
1: entirely from CPU). The next three parameters set the 20-bit output range and should
match the jumpers on the board (LIBRP_HRDAC RANGE_FULL: +-10V,
LIBRP_HRDAC_RANGE_SMALL: 0-10V). Parameters input_range1 and input_range2 are
related to RP inputs: 0 means +-1V operation, 1 is +- 10 V. Some of these settings are
turned on when the SetState command is issued. Parameters dds1_range and dds2_range
can be used to override the default range of synthesised harmonic signal coming out of the
lock-in. If set to 1, the amplitude range is only 0.5 V and the signal is shifted towards positive
values. This can be useful when output should go directly to some piezo amplifier. Otherwise
the full range +-1 V is used, which is the default behaviour. Oversampling is applied to
ADS8598H ADCs connected via SPI communication. Allowed values range from 0 (no
averaging) to 6 (64 values are averaged), which is also the default value. See the ADC
datasheet for more information.

Parameter rp1_input_hv and rp1_input_hv should be set to 1 if the fast ADC jumpers on RP
are on HV range. Parameter rp_bare_output should be set to 1 if we don’t use the auxiliary
amplifiers to convert the bare RP outputs from +-1 V to +- 10 V. Similarly, parameter
rp_bare_input should be used only if the inputs are connected directly to fast RP ADC.

int librp_LoadCalData(librpSet *rpset, double rpadc1_bare_Iv_offset, double
rpadc1_bare_lv_slope, double rpadc1_bare hv_offset, double rpadc1_bare hv_slope,
double rpadc2_bare_Iv_offset, double rpadc2_bare_Iv_slope, double
rpadc2_bare_hv_offset, double rpadc2_bare_hv_slope, double rpadc1_divhigh_Iv_offset,
double rpadc1_divhigh_Iv_slope, double rpadc1_divhigh_hv_offset, double
rpadc1_divhigh_hv_slope, double rpadc1_divlow_Iv_offset, double rpadc1_diviow_Iv_slope,
double rpadc1_divlow_hv_offset, double rpadc1_diviow _hv_slope, double
rpadc2_divhigh_Iv_offset, double rpadc2_divhigh_Iv_slope, double
rpadc2_divhigh_hv_offset, double rpadc2_divhigh_hv_slope, double

rpadc2_divlow Iv_offset, double rpadc2_divilow_Iv_slope, double rpadc2_diviow_hv_offset,
double rpadc2_divlow_hv_slope);

Sets the conversion factors between fast RP inputs and real values for all the potential
combinations of input settings. This includes LV and HV options on the RP inputs, use of
1:10 divider on the auxiliary board, use of this board without division and use of bare inputs
without board. The used equation has form: real_world_value = (integer_value +
offset)*slope.

int librp_SetInputRange(librpSet *rpset, int input1_range, int input2_range)
Changes the input range settings (see librp_Init).

int librp_SetDDSRange(librpSet *rpset, int dds1_range, int dds2_range)
Changes the DDS range settings (see librp_Init).

int librp_SetOversampling(librpSet *rpset, int oversampling)
Changes the oversampling settings (see librp_Init).

int librp_Close (librpSet *rpset)
Stops all the functions and closes all connections.

int librp_ReadADC (librpSet *rpset, double *adc1, double *adc2)
Reads actual FPGA raw ADC values for the two simultaneous high-speed inputs, converted
from raw values to the +-1V input range.

int librp_ReadResults (librpSet *rpset, double *error, double *dac, int raw)

Reads actual main FPGA feedback loop results. Meaning of the error signal depends on the
feedback loop regime. Values are converted from FPGA numbers depending on the regime
of operation, unless the raw option is set. Note that the result value (dac) can be in practice
routed somewhere else than the particular channel dac output, depending on mode of
operation. If a 20-bit external DAC is connected and the zpiezo _hrdac option is set,
librp_ReadZSlow provides the correct dac value.

int librp_ReadLockin (librpSet *rpset, int channel, double *amplitude, double *phase)
Reads actual FPGA lock-in results for the selected channel, regardless if there is anything
generated in that channel or if it has any meaning at the moment.

int librp_ReadLockinAxes (librpSet *rpset, int channel, double *x, double *y);
Reads the sine/cosine demodulation data from a lockin.

int librp_ReadHRDAC (librpSet *rpset, double *zslow)

Reads the FPGA based z value that goes to 20-bit DAC for z axis, if requested so during the
init phase. In contrast to ReadResults dac value, which is scaled for the RP 14-bit output,
this value has higher bit depth.

int librp_ReadPLLResult (librpSet *rpset, double *pliresult, double *ampresult)
Reads actual FPGA value of PLL results, used in FM mode (tracked frequency and
amplitude).

int librp_ReadDebug (librpSet *rpset, double *debug)
Reads actual FPGA debug value, this might be whatever is connected to it on the FPGA
side. It is not intended for general use.

int librp_SetState(librpSet *rpset, int state, int feedback, int out1, int out2, int outhr, int
swap_in, int swap_out, int pidskip)

Sets the FPGA feedback loop, feedback loop status (on/off) and other parameters: output
channels for two fast RP outputs and for the 20-bit DAC if enabled (e.g. excitation, dac
value, pid result, see cmirp.h for definition) and input/output signal swaps. Pidskip can be
used to slow down the feedback loop (0: 125 MHz, 1: 1 MHz, 2: 120 kHz, 3: 15 kHz).

int librp_SetFeedback(librpSet *rpset, int feedback)
Convenience function that calls librp_SetState with actual parameters except feedback, to
switch it on or off.

int librp_SetSignalProcessing(librpSet *rpset, int channel, int decimation, int loopback, int
hr, int phaseshift, int debugsource, int filter_phase, int nwaves, int Ifr, int intosc)

Sets different parameters of the channel. Parameter decimation sets the FPGA IIR filter for
the selected channel. Decimation=0 means that the filter is switched off, the reasonable
values are 1-12. Parameter loopback allows the use of an internal value (e.g. output of
another calculation) as an input to the lockin. Which parameter is used internally is controlled
by the SetState() command. Parameter hr increases the resolution of the lockin about 64
times, at costs of bad operation for higher voltages and lower frequencies. Parameter
debugsource passes either sine or cosine signal to debug output of the lockin. Filter_phase
adds a simple IIR low pass filter at about 4 kHz to phase output of the lock-in. Parameter
nwaves determines from how many individual waves each lock-in output is calculated, 0-5
means 1-32 waves (2*N). Parameter Ifr sets the generator range: 0 means full range (0-2
MHz, about 0.02), 1 means the limited range. Parameter intosc asks the lock-in related to
this channel to use auxiliary signal generator (see SetAuxGen) as the reference frequency
for lock-in detection, instead of its own frequency set by SetGen (that is then used only for
output).

int librp_SetGen (librpSet *rpset, int channel, double frequency, double amplitude, double
offset)

Sets the FPGA frequency and amplitude of the lock-in frequency generator. Frequency (in
Hertz) can be set in the range from 500 Hz to 1990000 Hz, amplitude is in Volts and its
range is +-10 V. Depending on the feedback loop regime this value is output to the DAC or
not. Offset is added to the value (provided in Volts, range is +- 10 V).

int librp_SetSetpoint (librpSet *rpset, double setpoint, int raw)
Sets the FPGA setpoint for the main feedback loop. The value is converted to appropriate
FPGA numbers depending on the regime of operation, unless a raw option is set.

int librp_SetPid (librpSet *rpset, double p, double i, double d, int errorshift)
Sets the FPGA PID parameters for the main feedback loop. Parameters can be in range 0-1,
higher value typically means faster response. Note that changing PID parameters on the fly

might lead to some interrupted operation, which should be avoided - a possible workaround
is to stop the feedback before setting PID values and to start it after that again. Parameter
errorshift performs a bit shift of the error signal internally in the feedback loop.

int librp_SetPidOffset (librpSet *rpset, double value)
Sets the offset of zpiezo, i.e. value that is added to the feedback loop output.

int librp_GetPidOffset (librpSet *rpset, double value)
Gets the last set value of piezo offset.

int librp_SetKPFM (librpSet *rpset, int mode, double frequency, double amplitude, double p,
double i, double d, double offset)

Sets all the parameters of KPFM operation from one place, calling different functions to set
the desired frequency, amplitude, offset. All this can be done also manually. Modes are
defined in cmirp.h and can be either manual (only setting the voltage) or “kpfm”, with a
feedback loop. In the FM regime the phase output of lock-in1 is driven to lock-in2 (parameter
loopback in SetSignalProcessing). Note that using KPFM requires use of external 20bit
z-piezo, in order to free the 14-bit output for KPFM operation.

int librp_SetDAC (librpSet *rpset, int channel, double value)

Sets the FPGA high speed DAC outputs directly. This is done only when the regime and
feedback loop state allows it. Range is +-1V. If this is set up during the init phase, the
channel 2 output can also be set via 20-bit DAC using this function, in this case the range is
0-10 V or +- 10 V (also set in librp_Init function).

int librp_SetHRDAC (librpSet *rpset, double value)
Sets the value for the 20-bit DAC connected to the FPGA, the range is the same as for the
librp_SetDAC.

int librp_SetPLL (librpSet *rpset, int on, int amon, double phase, double amplitude, double
p, double i, double ap, double ai, double ad, int phase_limit, int frequency_limit, int pliskip, int
pll_input)

Sets the PLL operation. Phase is the setpoint value (in radians), p and i are parameters of
the feedback loop, which is switched on and off using the on value. The amplitude
stabilisation can be switched using the “amon” parameter and second set of PID loop
parameters. Settable phase limit (integer values 0-7 correspond to about 1/32 to full scale)
can be used prior to FM feedback loop application, as well as maximum frequency shift limit
(integer values 0-7 correspond to about 7.5, 15, 30, 60, 120, 240 and 480 Hz). Pliskip is the
slowdown factor for the PLL feedback loop, having the same meaning as for the main PID.

int librp_DPinSetState (librpSet *rpset, int pin, int on)

Sets the FPGA digital output pin on (high) or off (low). Pins are numbered 0-15, representing
first dio_n [0-7] and then dio_p [8-15] on the Red Pitaya extension connector. Note that when
the whole electronics is used (including the generation and data acquisition framework), the
pins 0-15 should not be controlled by the user as they serve for driving the additional DA and
AD converters.

int librp_SPICycle (librpSet *rpset, double hrdac1, double hrdac2, double hrdac3, double
*Irdac, double *adc, int read_adc1, int read_adc2, int mux1, int mux2)

Runs the whole SPI communication cycle: three high resolution DAC values hrdac1, hrdac2
and hrdac3 are set (range is +-10 V) , sixteen low resolution DAC values are set, provided
by array Irdac[16] (range is +-10 V) and sixteen ADCs are read and stored to adc[16] array
(range is +-10 V) . The ADC readout can be further tuned by reading the first eight channels,
the second eight channels, or all. All the DAC values are set only if they differ from previous
settings. Mux1 and mux2 values control the multiplexers (values in the range 0-15), i.e. they
control which analog signal is connected to Red Pitaya’s input1 or input2, respectively.

